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In this paper we discuss a closed-form approximation to the transition probability and
likelihood function of an arbitrary diffusion process. The approximation is based on an
exponential ansatz of the transition probability for a finite time step ∆t, and a series
expansion of the deviation of its logarithm from that of a Gaussian distribution. Through
this procedure, dubbed exponent expansion, the transition probability and the likelihood
function are obtained as a power series in ∆t which becomes exponentially exact if an
increasing number of terms is included, and provides remarkably accurate results even
truncating it to the first few (say 3) terms. The coefficients of such expansion can be
determined straightforwardly through a recursion, and involve simple one-dimensional
integrals.

Such closed-form approximations are of primary importance for the maximum like-
lihood estimation of the parameters of continuous time diffusion processes observed on
discrete times, for which exact expressions for the likelihood function is generally not
available. In derivative pricing a closed-form expression of the transition probability asso-
ciated with the dynamics of a certain underlying allows one to develop fast approximation
schemes for the price of contingent claims.

We present several examples of financial interest, and we compare our results with
the state-of-the-art approximation of discretely sampled diffusions [Aı̈t-Sahalia, Journal

of Finance 54, 1361 (1999)]. We find that the exponent expansion provides a similar
accuracy in most of the cases, but a better behavior in the low-volatility regime. Fur-
thermore the implementation of the present approach proves to be simpler.

Within the functional integration framework the exponent expansion allows one to
obtain remarkably good approximations of the pricing kernels of financial derivatives.
This is illustrated with the application to simple path-dependent interest rate deriva-
tives. Finally we discuss how these results can also be used to increase the efficiency of
numerical (both deterministic and stochastic) approaches to derivative pricing.

Keywords: computational Finance; stochastic processes; derivative pricing; path integral
Monte Carlo.

1. Introduction

Continuous-time diffusion processes is basis of much of the modeling work performed

every day in Finance and Economics, from portfolio optimization and econometric
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modelling to contingent claim pricing. Indeed, since Bachelier’s 1900 doctoral thesis

on the application of probability theory to the dynamics of stock prices [1], many

economic variables subject to unpredictable fluctuations, have been modeled by

stochastic differential equations of the form

dYt = µy(Yt)dt + σy(Yt)dWt . (1.1)

Here µy(y) is the drift, describing a deterministic trend, and σy(y) ≥ 0 is the

volatility function, describing the level of randomness introduced by the Wiener

process (i.e., white noise), dWt. The main reason for the popularity of this class of

models is probably that in continuous time one can perform analytic calculations

using the instruments of stochastic calculus, and the powerful framework of partial

differential equations.

In particular, for the few cases for which the process (1.1) is exactly solvable,

one can derive closed-form solutions for the associated transition probability. The

latter contains all the statistical properties of the financial quantity modeled by

the diffusion, and can be exploited in a variety of ways, including the derivation

of no-arbitrage prices for financial derivatives in complete markets. The milestone

results derived by Black, Scholes and Merton [2,3], Cox, Ingersoll and Ross [4], or

Vasicek [6], are among the most significant examples of the amount of progress in

Economics that has been done using integrable continuous-time diffusion processes.

Nonetheless, an accurate description of the market observables requires in gen-

eral more sophisticated models than those for which an analytic solution is available.

These are usually tackled by means of numerical schemes ultimately relying on a

discretization of the diffusion, obtained by replacing the infinitesimal time dt with

a finite time step, ∆t. These approaches for instance involve either solving numeri-

cally a Kolmogorov partial differential equation, or a Monte Carlo sampling of the

diffusive paths. The approximate results obtained in this way become exact only

approaching the limit ∆t → 0, and this can be done with some computational effort.

In addition, a drawback of these numerical approaches, more specific to econometric

applications, is that they do not produce a closed-form expression for the transition

probability. These are crucial for the maximum-likelihood estimations of the param-

eters, say θ, of model diffusions. In fact, observations of economic data are generally

performed on a discrete sets of observations usually well spaced in time, say weekly

or monthly. As a result, only if the transition probability, ρ(X(l+1)∆t, ∆t|Xl∆t; θ),

associated with each time interval ∆t of the series t = l∆t (l = 1, . . . n), is known

in closed form, the maximum likelihood function,

ln(θ) =
1

n

n
∑

l=1

log ρ(X(l+1)∆t, l∆t|Xl∆t) , (1.2)

can be analytically maximized over θ. If this is not the case, the maximization

involves repeating the numerical calculation of the transition probability for ev-

ery value of θ needed for the determination of the minimum, e.g. by means of a

optimization algorithm. This can be clearly very time consuming.
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Motivated by this difficulty, Aı̈t-Sahalia recently proposed a method to approx-

imate the transition probability for one dimensional diffusion [18] by means of a

Hermite polynomial expansion. This was applied to a variety of test cases, and the

accuracy of the method was clearly demonstrated.

In this paper, we utilize the exponent expansion – a technique introduced in

chemical physics by Makri and Miller [7] – to derive a closed-form short-time ap-

proximation of the transition probability of the diffusion process (1.1). The aim is

to obtain an analytic approximation which is as accurate as possible for a time step

∆t as large as possible. On one hand, this allows one to derive approximations of

financial quantities that are very accurate even for sizable values of the time step,

and to derive closed form expression for the maximum likelihood function (1.2). On

the other, it allows a reduction of the computational burden of numerical schemes as

the limit ∆t → 0 can be achieved with larger time steps, i.e., with less calculations.

Our approach is similar in spirit to the one of Ref. [18], reviewed in Section 2.1,

but it overcomes some of its shortcomings and it is of simpler implementation. In

particular, the coefficients of the exponent expansion can be expressed in terms of

one dimensional integrals that can be easily calculated numerically. In addition, we

show how we can apply our approach to any sufficiently regular volatility function,

even when the latter does not have an analytic expression but it is only specified

numerically through an interpolation procedure, e.g. as it is the typically the case

for local volatility models.

The possibility to use Makri and Miller’s technique to derive approximations

of the transition probability was originally hinted by Bennati et al. in Ref. [8,9].

Here we explore this route, giving derivations for a generic diffusion process with

state-dependent drift and volatility, and we study the reliability of the exponent

expansion by applying it to several diffusion processes of financial interest.

Through the exponent expansion, the transition probability is obtained as a

power series in ∆t which becomes asymptotically exact if an increasing number of

terms is included, and provides remarkably accurate results even truncating it to

the first few (say, n = 3) terms. Two derivations are offered, the first by means of

Kolmogorov’s forward equation [10] (Sec. 2.2), and the second introducing a slightly

different formalism (Sec. 2.2.1). The latter, once the problem is formulated in terms

of Feynman’s path integrals [11,12], allows the generalization of the exponent expan-

sion to the calculation of the pricing kernel of financial derivatives whose underlying

follows the considered diffusion. This allows in turn the derivation of simple approx-

imations for the price of such contingent claims (Sec. 3). In Sections 2.3 and 3.3, we

illustrate the exponent expansion through the application to the Vasicek, the Cox-

Ingersoll-Ross, and the Constant Elasticity of Variance models, and in Section 4 we

discuss its application to Monte Carlo and deterministic numerical methods within

the path integral framework [13,14,15,16,17,9]. Finally, we draw our conclusions,

and we discuss future developments in Section 6.
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2. Transition probability of Diffusion process

Let us consider the problem of estimating the transition probability associated

with one-dimensional continuous-time diffusion processes of the form (1.1). The

transition probability ρy(y, ∆t|y0), giving the likelihood that the random walker

following the process (1.1) ends up in the position y at time t = ∆t, given that it

was in y0 at time t = 0. Such transition probability must satisfy the Kolmogorov

forward (or Fokker-Planck) equation [10]:

∂tρy(y, ∆t|y0) =

[

−∂yµy(x) +
1

2
∂2

yσy(y)2
]

ρy(y, ∆t|y0) . (2.1)

In this section we will consider short-time approximations of the transition prob-

ability above that can be derived in closed form. We will start by reviewing the

Hermite polynomial expansion, recently introduced by Aı̈t-Sahalia [18], and then

describe the exponent expansion.

2.1. Review of the Hermite polynomials expansion

The first step of Aı̈t-Sahalia’s derivation is to transform the original process in an

auxiliary one, say Xt, with constant volatility σx. Following Ref. [18], this can be

achieved in general through the following integral transformations

Xt = γ(Yt) ≡ ±σx

∫ Yt dz

σy(z)
, (2.2)

where the choice of the sign is just a matter of convenience depending on the specific

problem considered. The latter relation defines a one to one mapping between the

x and y processes as the condition σy(z) ≥ 0 ensures that the function x = γ(y)

defined by (2.2) is monotonic, and therefore invertible. a A straightforward appli-

cation of Ito’s Lemma [10] allows one to write the diffusion process followed by Xt

as

dXt = µx(Xt)dt + σxdWt , (2.3)

with

µx(x) = ±σx

[

µy(γ−1(x))

σy(γ−1(x))
− 1

2

∂σy

∂y
(γ−1(x))

]

, (2.4)

where y = γ−1(x) is the inverse of the transformation (2.2).

Using Hermite polynomials, it is possible to show [18], that a short time approx-

imation of the transition probability can be expressed up to order N as

ρX(x, ∆t|x0) = ∆t−1/2φ(
x − x0

∆t1/2
) exp

(

∫ x

x0

dzµx(z)
)

N
∑

n=0

cn(x, x0)
(∆t)n

n!
, (2.5)

aFor a discussion of the regularity conditions on the drift and volatility functions see e.g., Ref. [18].
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where φ(x) is a standard normal distribution. Here the coefficients cn[x|x0] can be

derived by solving the recursive equation

cn(x|x0) = n(x − x0)
−n

∫ x

x0

dz(z − x0)
n−1

(

λ(z)cn−1(z, x0) +
1

2
∂2

zcn−1(z, x0)

)

,

(2.6)

for n > 0, with c0(x, x0) ≡ 1. Here, we have defined the quantity:

λ(x) = −1

2

(

µx(x)2 + ∂xµx(x)
)

. (2.7)

Finally, the transition probability for the process Y can be determined through

the Jacobian of the transformation (2.2) giving

ρy(y, ∆t|y0) = σx
ρx(γ(y), ∆t|x0)

σy(y)
. (2.8)

The expansion above, turns out to provide very accurate results in a variety of

cases for which the exact expression of the transition probability is available. Some

of these examples will be considered in detail in the following when we will compare

the results obtained with the approximation given by Eqs. (2.5)-(2.8), with those

given by the exponent expansion described in this paper, and introduced in the

following Section.

2.2. The Exponent Expansion

In this Section, we derive the exponent expansion for the transition probability,

ρy(y, ∆t|y0) for the process (1.1). In order to make the derivation easier, it is con-

venient to transform the original process in the constant volatility one Eq. (2.3) by

means of the transformation (2.2).

For ∆t → 0 the transition probability for the process is dominated by the

diffusive Gaussian component and therefore reads:

ρx(x, ∆T |x0) =

(

1

2πσ2
x∆t

)1/2

exp

(

− (x − x0)
2

2σ2
x∆t

)

. (2.9)

Guided by this observation, in order to find an expression for the transition proba-

bility associated with Eq. (2.3) which is accurate for a time ∆t as long as possible,

we make the following ansatz:

ρx(x, ∆t|x0) =
1

√

2πσ2
x∆t

exp

[

− (x − x0)
2

2σ2
x∆t

− W (x, x0, ∆t)

]

. (2.10)

Such transition probability must satisfy the Kolmogorov forward (or Fokker-

Planck) equation [10]:

∂tρ(x, ∆t|x0) =

[

−∂xµx(x) +
1

2
σ2

x∂2
x

]

ρx(x, ∆t|x0) . (2.11)
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Note that since the auxiliary process X has a constant volatility, the latter equation

is mathematically much simpler than the one for the process Y (2.1). This implies

in turn that the function W (x, x0, t) follows the equation:

∂tW = −µx∂xW +
1

2
σ2

x∂2
xW− 1

2
σ2

x (∂xW )
2
+∂xµx−

x − x0

∆t

(

∂xW +
µx

σ2
x

)

. (2.12)

Expanding the function W (x, x0, t) in powers of ∆t,

W (x, x0, ∆t) =

∞
∑

n=0

Wn(x, x0)∆tn , (2.13)

substituting it in Eq. (2.12), and equating equal powers of ∆t leads in a straight-

forward way to a decoupled equation for the order zero in ∆t giving

W0(x, x0) = − 1

σ2
x

∫ x

x0

dz µx(z) , (2.14)

and to the following set of recursive differential equations:

(n + 1)Wn+1 = −(x − x0)∂xWn+1 +

[

1

2
σ2

x∂2
x − µx∂x

]

Wn

− 1

2
σ2

x

m=n
∑

m=0

∂xWm∂xWn−m + δn,0∂xµx . (2.15)

In particular, for n = 0, 1, 2 Eqs. (2.15) read:

W1(x, x0) = −(x − x0) ∂xW1(x, x0) +

[

1

2σ2
x

µx(x)2 +
1

2
∂xµx(x)

]

, (2.16)

2W2(x, x0) = −(x − x0) ∂xW2(x, x0) +
1

2
σ2

x ∂2
xW1(x, x0) , (2.17)

3W3(x, x0) = −(x − x0) ∂xW3(x, x0) +
1

2
σ2

x∂2
xW2(x, x0) ,

− 1

2
σ2

x(∂xW1(x, x0))
2 . (2.18)

The differential equations above (2.15) are all first order, linear and inhomogeneous

of the form

nWn(x, x0) = −(x − x0)∂xWn(x, x0) + Λn−1(x, x0) , (2.19)

where Λn−1(x, x0) is a function that is completely determined by the first n − 1

relations. It can be readily verified by substitution and integration by parts that

the solution of (2.19) reads

Wn(x, x0) =

∫ 1

0

dξξn−1Λn−1(x0 + (x − x0)ξ, x0) . (2.20)
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This, for n = 1, 2, 3, after some manipulations, gives:

W1(x, x0) =
1

∆x

∫ x

x0

dzVeff(z) , (2.21)

W2(x, x0) =
σ2

x

2∆x2
[Veff(x) + Veff(x0) − 2W1(x, x0)] , (2.22)

W3(x, x0) = − σ2
x

2∆x4

[

∆x

∫ x

x0

dzVeff(z)2 −
(∫ x

x0

dzVeff(z)

)2
]

− 3σ2
x

∆x2
W2(x, x0) +

σ4
x

4∆x3
[∂xVeff(x) − ∂xVeff(x0)] , (2.23)

where ∆x = x−x0, and, for reasons that will be clearer in the next Section, we have

also introduced the ‘effective potential’ as the following quantity with dimension

time−1:

Veff(x) =
1

2σ2
x

µx(x)2 +
1

2
∂xµx(x) . (2.24)

Note that, from Eq. (2.7), Veff(x) = −2λ(x). At this time, we just note that the

first order correction can be rewritten as

W1(x, x0) =
1

∆t

∫ ∆t

0

dt Veff(x0 + t∆x/∆t) , (2.25)

leading to the interpretation of this term as a time-average of the effective potential

over the straight line, constant velocity (∆x/∆t) trajectory between x0 and x.

Similarly, the leading term in W3(x, x0) (i.e., the one proportional to the lowest

power of the volatility) is proportional to the variance of the effective potential over

the same trajectory. Finally, we observe that the corrections Wn(x, x0) are well

defined in the limit ∆x → 0. In particular, for n = 1, 2, 3 it is not difficult to show

that

lim
x→x0

W1(x, x0) = Veff(x0) , (2.26)

lim
x→x0

W2(x, x0) =
σ2

x

12
∂2

xVeff(x) , (2.27)

lim
x→x0

W3(x, x0) = −σ2
x

24
(∂xVeff(x))2 +

σ4
x

240
∂4

xVeff(x) . (2.28)

Finally, the transition probability of the original diffusion (1.1) is recovered by

means of the Jacobian transformation (2.8).

The form of the trial transition probability represents the main difference of the

present approach to the one described in Section 2.1 Ref. [18], which is otherwise

very similar in spirit. In fact, the latter expands in powers of ∆t the exponential

exp [−W (x, x0, ∆t)] rather then just the exponent, as we do here, instead. As it

will be shown explicitly in the following, the present choice gives rise to a distinct

approximation scheme for n > 0 providing generally a similar level of accuracy

but remarkably simpler mathematical expressions. This is because, by keeping the
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exponential form of the ansatz, one formulates a guess which is closer to the exact

one. The latter, can be expected to have an exponential form in order to satisfy

the Chapman-Kolmogorov property of Markov processes [10]. In addition, the ex-

ponential choice of the ansatz automatically enforces the positive definiteness of the

transition density which is not granted in the approach of Ref. [18]. In fact, as it

will be shown explicitly in Sec. 2.3, in the limit of very small volatility (σx → 0),

when the effect of the noise disappears and transition density converges to a Dirac’s

δ distribution, the expansion of Ref. [18] breaks down as the transition probability

becomes negative. On the contrary, the exponent expansion remains well defined

and accurate also in this limit. Indeed, the first terms of the expansion in ∆t can

be also derived through a small volatility expansion of the transition density, as it

will be discussed in Sec. 3.1.

Similarly to the expansion developed in Ref. [18] the exponent expansion has in

general a finite convergence radius which is a decreasing function of the volatility.

As it will be shown in the following, for the values of volatilities and ∆t relevant for

financial applications the exponent expansion turns out to be very accurate even

when truncated to the first few terms.

2.2.1. Alternative derivation

The term W0(x, x0) in the exponent expansion is somewhat different from the higher

order terms. In fact, it is defined by Eq. (2.14) which is decoupled from the recursive

system (2.15). Indeed, it is possible to obtain the same result for the exponent

expansion by expressing the transition density as

ρx(x, ∆t|x0) = e−W0(x,x0)Φρx
(x, ∆t|x0) , (2.29)

and looking for an approximate expansion of the form (2.10) for Φρx
(x, ∆t|x0). It

is easy to show by direct substitution in the forward Kolmogorov equation (2.11)

that Φρx
(x, ∆t|x0) is the solution of

Hx Φρx
(x, ∆t|x0) = −∂tΦρx

(x, ∆t|x0) , (2.30)

where Hx is the “Hamiltonian” differential operator

Hx = −σ2
x

2
∂2

x + Veff(x) , (2.31)

and Veff(x) is the effective potential of Eq. (2.24). As a result one can equivalently

derive the exponent expansion by substituting in Eq. (2.30) the following trial func-

tion

Φρx
(x, ∆t|x0) =

1
√

2πσ2
x∆t

exp

[

− (x − x0)
2

2σ2
x∆t

−
∞
∑

n=1

Wn(x, x0)∆tn

]

, (2.32)

which does not contain the term W0(x, x0). This observation will be used in Section

3 to generalize the exponent expansion to the pricing kernel of financial derivatives.
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2.2.2. Exponent Expansion Coefficients in terms of the the Original Diffusion

The derivations of the exponent expansion, and of the Hermite polynomial approx-

imation of Section 2.1, both rely on the introduction of the auxiliary process (2.3),

and the integral transformation (2.2). As a result, the expressions obtained are

easy to handle if the the volatility of the original process σy(y) is such that both

the function γ(y) (2.2) and its inverse γ−1(x) admits a closed-form expression. In

fact, in this case the effective potential (2.24) – or the function λ(z) (2.7) – has a

closed-form expression, and the determination of the coefficients of the expansion

can be determined either analytically or through numerical quadrature. This is the

case for the examples considered in the following. However, these are very special

cases. In fact, very few volatility functions have a reciprocal for which a primitive

exist. And an even smaller subset of this functions have an integral function for

which the inverse can be expressed in closed form. In addition, in many practical

applications, e.g. in local volatility models [5], the volatility is specified numerically

through a fit to an implied volatility function. For all these cases the application of

the exponent expansion or the approach of Section 2.1 becomes cumbersome and

computationally demanding.

However, at a more careful analysis, it turns out that it is possible to circum-

vent this difficulty, and to eliminate any dependence on the function γ−1(x) in the

expressions for the exponent expansion. This makes its application straightforward

for any diffusion process, irrespective of the analytic tractability of the specified

volatility function. The first step to do this, is to note that, according to the Ja-

cobian transformation (2.8), x and x0 in Eq. (2.10) need to be calculated for γ(y),

and γ(y0), respectively. As a result, one can express the exponent expansion as

ρy(y, ∆t|y0) =
1

√

2π∆tσy(y)2
exp

[

− (γ(y) − γ(y0))
2

2∆t
−

∞
∑

n=0

W̃n(y, y0)∆tn

]

.

(2.33)

with the notation

G̃(y, y0) = G(x, x0, . . .)|x=γ(y),x=γ(y0), (2.34)

and taking, without any loss of generality σx = 1. Now, using Eq. (2.14), by means

of the change of variables y = γ−1(x) one can express the zeroth order term as

W̃0(y, y0) = −
∫ y

y0

dz

σy(z)
µ̃x(z)

where, using Eq. (2.4),

µ̃x(z) = ±
[

µy(z)

σy(z)
− 1

2

∂σy

∂y
(z)

]

. (2.35)

As anticipated, the expression for W0 does not contain any reference to the function

γ−1(x) so that it can be calculated even if there is no closed-form expression for
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γ(y) =
∫ y

y0

dz/σy(z) available, or if the latter is not analytically invertible. Similarly,

using Eqs. (2.21)-(2.23) one can easily find

W̃1(y, y0) =
1

∆ỹ

∫ y

y0

dz

σy(z)
Ṽeff(z) , (2.36)

W̃2(y, y0) =
1

2∆ỹ2

[

Ṽeff(y) + Ṽeff(y0) − 2W̃1(y, y0)
]

, (2.37)

W̃3(y, y0) = − 1

2∆ỹ4

[

∆ỹ

∫ y

y0

dz

σy(z)
Ṽeff(z)2 −

(∫ y

y0

dz

σy(z)
Ṽeff(z)

)2
]

− 3

∆ỹ2
W̃2(y, y0) +

σy(y)

4∆ỹ3

[

∂yṼeff(y) − ∂yṼeff(y)
]

, (2.38)

where ∆ỹ = γ(y) − γ(y0), and the effective potential now reads

Ṽeff(y) =
1

2
µ̃x(y)2 +

1

2
σy(y)∂yµ̃x(y) . (2.39)

As a result, the exponent expansion can be easily applied for any specification of

the volatility function σy(y). Indeed, given any drift and volatility function one can

immediately calculate – possibly numerically – their derivatives and the function

γ(y). From these quantities, one then easily calculates – possibly numerically – the

coefficients of the exponent expansion.

2.3. Examples

The application of the exponent expansion to a generic diffusion process of the form

(1.1) is rather straightforward and reduces to the calculation of one dimensional

integrals. In this Section, we illustrate this procedure for a few test cases, namely for

the Vasicek [6], the Cox-Ingersoll-Ross [4], and the Constant Elasticity of Variance

[19] diffusion processes. We will compare the results of the exponent expansion with

the exact results available in literature, and with the approach of Ref.[18].

2.3.1. Vasicek diffusion

We first consider the Ornstein-Uhlenbeck diffusion proposed by Vasicek [6] as a

model for the short-term interest rate:

dXt = a(b − Xt)dt + σdWt , (2.40)

where a, b, and σ are positive constants representing the mean-reversion level, the

velocity to mean reversion, and the volatility, respectively. This model is integrable

and the corresponding probability density function is Gaussian:

ρex(x, ∆t|x0) =
1

(2πσ̄2)1/2
exp

[

− [(x0 − a)e−a∆t − (x − a)]2

2σ̄2

]

, (2.41)

with

σ̄ = σ

√

1 − e−2a∆t

2a
. (2.42)
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Fig. 1. Accuracy of the exponent expansion for the transition density of the Vasicek model (2.40).
for a = 0.0717, b = 0.261 and x0 = 0.1. Panel (a): comparison between the exponent expansion
(stars) and the approximation of Ref. [18] (squares) for σ = 0.02237 and ∆t = 0.5. At order zero
the two schemes are identical. The uniform error of the Euler approximation is also reported for
comparison. Panel (b): comparison between the exponent expansion (stars) and the approximation
of Ref. [18] (squares) in the regime of low volatility (σ = 0.01), for ∆t = 0.5.

The exponent expansion of the Vasicek model can be easily derived using

Eqs. (2.14), and (2.21-2.23) with the effective potential, Eq. (2.24),

Veff(x) =
a2(b − x)2

2σ2
− a

2
, (2.43)

and gives,

ρx(x, ∆t|x0) =
1√

2πσ2∆t
exp

[

− (x − x0)
2

2σ2∆t
− W0(x, x0)

− W1(x, x0)∆t − W2(x, x0)∆t2 − W3(x, x0)∆t3
]

, (2.44)
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Fig. 2. Accuracy of the exponent expansion for the transition density of the Vasicek model (2.40).
for a = 0.0717, b = 0.261 and x0 = 0.1. Maximum relative error for σ = 0.02237 as a function of
∆t: n = 0 (continuous), n = 1 (dotted), n = 2 (long dashed) and n = 3 (short dashed). The inset
is an enlargement of the 5-10 years region.

up to the third order in ∆t (n = 3). Here

W0(x, x0) =
a(x − b)2 − a(x0 − b)2

2σ2
, (2.45)

W1(x, x0) =
a2

6σ2
((x − b)2 + (x0 − b)2 + (x − b)(x0 − b)) − a

2
, (2.46)

W2(x, x0) =
σ2

2∆x2

[

Veff(x) + Veff(x0) − 2W1(x, x0)
]

, (2.47)

W3(x, x0) = − σ2
x

2∆x3

[ a4

20σ4
[(x − b)5 − (x0 − b)5]

+
a2

4
∆x − a3

6σ2
[(x − b)3 − (x0 − b)3]

]

+
σ2

x

2∆x2
(W1(x, x0))

2 − 3σ2
x

∆x2
W2(x, x0) +

a2σ2
x

4∆x2
, (2.48)

with ∆x = x − x0. It is interesting to note that the approximate transition proba-

bility obtained with the present approach reproduces exactly the expansion of the



September 4, 2006 23:51

A closed-form approximation for likelihood functions ... 13

exact transition density Eq. (2.41) at the same order.

On the other hand, the first two coefficients of the Hermite polynomials expan-

sion (2.5) as quoted in Ref. [18] read:

c1(x, x0) = − 1

6σ2

[

a(3b2a − 3(x + x0)baσ

+ (−3 + x2a + xx0a + x2
0a)σ2)

]

, (2.49)

c2(x, x0) =
1

36σ4

[

a2(9b4a2 − 18xb3a2σ + 3b2a(−6 + 5x2a)σ2

− 6xba(−3 + x2a)σ3 + (3 − 6x2a + x4a2)σ4

+ 2aσ(−3b + xσ)(3b2a − 3xbaσ + (−3 + x2a)σ2)x0

+ 3aσ2(5b2a − 4xbaσ + (−2 + x2a)σ2)x2
0 + 2a2σ3(−3b + xσ)x3

0

+ a2σ4x4
0)

]

. (2.50)

The fast convergence of the approximation scheme is illustrated in Figs. 12.

Here the percentage error of the exponent expansion with respect to the exact re-

sult (2.41) is plotted for various ∆t, and compared with the approach of Ref. [18].

The parameter choice, also taken from Ref. [18] corresponds to a sensible param-

eterization for interest rate markets. We adopt one year as unit of time, and we

express the various parameters in this unit. The Euler approximation

pE(x, ∆t|x0) =

√

1

2πσ2∆t
exp

(

− (x − x0 − µx(x0)∆t)2

2σ2
x∆t

)

, (2.51)

is also reported for comparison. The inclusion of each successive order allows one

to increase dramatically the accuracy of the approximation so that the third order

expansion has basically a negligible error even for a sizable time step of order 6

months. Remarkably, for the considered example, the third order expansion allows

one to estimate the 10 years transition probability with a relative error of less than

10 basis points (Fig. 2). As illustrated in Fig. 1-(a), in the present case the approach

of Ref. [18] provides a slightly poorer level of accuracy for n ≤ 2. In addition,

it generally produces more complicated mathematical expressions. Furthermore,

as shown in Fig. 1-(b), in the regime of small volatility the exponent expansion

still provides accurate results while the performance of the approach of Ref. [18]

degrades. In fact, as anticipated, in the limit of small volatility (σx . 0.5%) the first

order correction of the latter approach produces a negative transition probability

signaling a break down of the scheme.

2.3.2. Cox, Ingersoll and Ross diffusion

The Vasicek model is probably too easy of a test case as the associated transition

probability is Gaussian. In fact, since the exponent expansion has a leading term

which is Gaussian, the higher powers in ∆t just have to renormalize its average

and variance in order to reproduce the exact result. It is interesting therefore to
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test the accuracy of the exponent expansion for a diffusion process that, while still

integrable, generates a non-normal transition density. This is the case for the Feller’s

square root process [20]

dYt = a(b − Yt) + σy

√

YtdWt (2.52)

which is the basis of Cox, Ingersoll and Ross model for the instantaneous interest

rate [4]. The exact transition probability is given by [4]

ρex(y, ∆t|y0) = ce−(u+v)
( v

u

)
q

2

Iq(2
√

uv) , (2.53)

where c = 2a/[σ2
y(1−exp (−a∆t))], q = 2ab/σ2

y −1 ≥ 0, u = cy0 exp (−a∆t), v = cy

and Iq is the modified Bessel function of the first kind of order q [21].

As explained in Sec.2.2, since the volatility is not uniform, it is convenient to

introduce the auxiliary process defined by Eq. (2.2), as Xt = γ(Yt) ≡ 2
√

Yt/σy. The

Xt process follows Eq. (2.3), with σx = 1 and

µx(x) =
q̃

x
− a

2
x , (2.54)

and q̃ = q + 1/2. In this case the effective potential reads:

Veff(x) =
1

2
µx(x)2 − q̃

2x2
− a

4
, (2.55)

and the four terms of the exponent expansion in Eq. (2.13) are:

W0(x, x0) = −q̃ log
x

x0
+

a

4
(x2 − x2

0) (2.56)

W1(x, x0) =
1

2∆x

[

µx(xt) − µx(x0) − q̃2

(

1

x
− 1

x0

)

+
a2

12

(

x3 − x3
0

)

− aq̃ (x − x0)
]

(2.57)

W2(x, x0) =
1

2∆x2

[

Veff(x) + Veff(x0) − 2W1(x, x0)
]

(2.58)

W3(x, x0) = − 1

2∆x2

[

G(xt) − G(x0)

∆x
− (W1(x, x0))

2

]

− 3

∆x2
W2(x, x0) +

1

4∆x3
[∂xVeff(x) − ∂xVeff(x0)] , (2.59)

where ∆x = x − x0, ∂xVeff(z) = q̃(1 − q̃)/z3 + a2z/4, and

G(z) =
1

5
α2z5 − 1

3

β2

z3
+ γ2z + 2αβz − 2

βγ

z
+

2

3
αγz3 , (2.60)

and α = a2/8, β = q̃(q̃ − 1)/2, γ = −a(q̃ + 1)/2. Finally, going back to the original

process, using Eq. (2.8), the transition probability reads:

ρy(y, ∆t|y0) = ρx(2
√

y/σy, ∆t| 2√y0/σy)/σy
√

y . (2.61)
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The coefficients of the expansion in Hermite polynomials Eq. (2.5) as quoted in

Ref. [18] read instead:

c1(x, x0) = − 1

24xx0σ4

[

48b2a2 − 48baσ2 + 9σ4

+ xa2σ2(−24b + x2σ2)x0 + x2a2σ4x2
0 + xa2σ4x3

0

]

, (2.62)

c2(x, x0) =
1

576x2x2
0σ

8

[

9(256b4a4 − 512b3a3σ2 + 224b2a2σ4 + 32baσ6 − 15σ8)

+ 6xa2σ2(−24b + x2σ2)(16b2a2 − 16baσ2 + 3σ4)x0

+ x2a2σ4(672b2a2 − 48ba(2 + x2a)σ2 + (−6 + x4a2)σ4)x2
0

+ 2xa2σ4(48b2a2 − 24ba(2 + x2a)σ2 + (9 + x4a2)σ4)x3
0

+ 3x2a4σ6(−16b + x2σ2)x4
0 + 2x3a4σ8x5

0 + x2a4σ8x6
0

]

. (2.63)

The accuracy of the exponent expansion in this case is illustrated in Figs. 3

and 4 . Similarly to the case of the Vasicek diffusion, the exponent expansion is

characterized by a remarkably fast convergence by including successive terms of the

approximation so that n = 3 provides already a virtually exact representation of the

transition density, for ∆t ' 1 yrs. In this case, the approach of Ref. [18] performs

slightly worse of the exponent expansion for n = 1, and slightly better for n = 2.

However, also in this case the former breaks down for small values of the volatility,

generating unphysical transition densities.

2.3.3. Constant Elasticity of Variance diffusion

As a last example we consider the Constant Elasticity of Variance model:

dYt = a(b − Yt)dt + σyY p
t dWt (2.64)

Here we consider for brevity only the case p > 1 and the transformation to a process

with constant (unit) variance is Xt = γ(Yt) = Y 1−p
t /σy(p− 1) and gives, according

to Eq. (2.4)

µx(x) =
c1

x
+ c2x + c3x

p

p−1 , (2.65)

with c1 = p/2(p−1), c2 = a(p−1), and c3 = −ab(p−1)p/(p−1)σ
1/(p−1)
y . In this case

the effective potential reads

Veff(x) =
1

2
µx(x)2 − c1

2x2
+

c2

2
+

p

2(p − 1)
c3x

1/(p−1) , (2.66)
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Fig. 3. Accuracy of the exponent expansion for the transition density of the Cox-Ingersoll-Ross
model (2.52), for a = 0.0721, b = 0.219, σ = 0.06665, and x0 = 0.06. Comparison between the
exponent expansion (stars) and the approximation of Ref. [18] (squares) for ∆t = 0.5. The uniform
error of the Euler approximation is also reported for comparison.

and the first three terms of the expansion are:

W0(x, x0) = c1 log
y0

yt
− a(p − 1)

2(2p − 1)

[

(2p − 1)(y2
t − y2

0)

+ 2b(p − 1)
p

p−1 σ
1

p−1

y

(

x
2p−1

p−1 − x
2p−1

p−1

0

)]

, (2.67)

W1(x, x0) =
1

2∆x

[

F (x) − F (x0)
]

, (2.68)

W2(x, x0) =
1

2∆x2

[

Veff(x) + Veff(x0) − 2W1(x, x0)
]

, (2.69)

with

F (z) = −c2
1

z
+

c2
2

3
z3 +

c2
3(p − 1)

3p − 1
z

3p−1

p−1

+ 2c1c2z +
2c1c3(p − 1)

p
z

p

p−1 +
2c2c3(p − 1)

3p − 2
z

3p−2

p−1 + µx(z) . (2.70)

Similarly to the examples considered previously, also for the Constant Elasticity
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Fig. 4. Accuracy of the exponent expansion for the transition density of the Cox-Ingersoll-Ross
model (2.52), for a = 0.0721, b = 0.219, σ = 0.06665, and x0 = 0.06. Probability density function
for ∆t = 1.5 as a function of n: n = 0 (dotted), n = 1 (long dashed), n = 2 (short dashed), n = 3
(continuous), Euler (dot-long dashed), exact (crosses). The inset is an enlargement of the region
of the maximum. On this scale, the estimates for n = 2 and n = 3 still appear coincident.

of Variance model we find a very fast convergence of the exponent expansion for

∆t ' 1, and a performance generally similar to the one of the approach of Ref. [18],

for values of the volatility large enough.

3. Pricing kernels for contingent claims

3.1. Path integral formulation

The exponent expansion can be generalized to obtain an approximation of the pric-

ing kernels of ‘standard’ derivatives. This can be done by formulating the pricing

problem within Feynman’s path integral framework [8,9]. Here we indicate as ‘stan-

dard’ any contingent claim written on the underlying, Yt, whose value at time t = 0,

V0, can be expressed as an expectation value of a functional of a certain type, namely

V0(∆t, y0) = E
[

P (Y∆t)F [Yu]
∣

∣

∣
y0

]

, (3.1)
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where

F [Yu] = exp

[

−
∫ ∆t

0

du VF [Yu]

]

, (3.2)

and P (Y∆t) is a payout function. Above ∆t is the time to expiry, and the expectation

value is performed with respect to the probability measure defined by the diffusion

for Yt that we assume of the form (1.1). European Vanilla options, zero coupon

bonds, caplets, and floorets clearly belong to this family of contingent claims. In

addition, other path-dependent derivatives, like barrier or Asian options can be

expressed in this form (see e.g., Refs. [23,24]).

Similarly to the case of the transition probability, it is in general convenient to

introduce an auxiliary diffusion with constant volatility of the form (2.3) by means

of the integral transformations (2.2). Then, the expectation value in (3.1) can be

transformed in an integral over the distribution generated by such auxiliary diffusion

by means of the usual Jacobian transformation (2.8). As a result, the value of the

option can be in general written as:

V0(∆t, x0) = E
[

P (X∆t)F [Xu]
∣

∣

∣x0

]

=

∫

D

dxP (x)K(x, ∆t|x0) . (3.3)

where D is the domain of the auxiliary process as defined by the relative stochastic

differential equation (2.3), and K(x, ∆t|x0) is the pricing kernel. The latter can be

expressed in terms of a path integral as it follows[8,9]

K(x, ∆t|x0) = e−W0(x,x0)Φ(x, ∆t|x0) (3.4)

with

Φ(x, ∆t|x0) =

∫ x(∆t)=x

x(0)=x0

D[x(u)] exp

[

−
∫ ∆t

0

du Leff [x(u), ẋ(u)]

]

. (3.5)

where W0 is given by Eq. (2.14) and the functional Leff [x(u), ẋ(u)] is the effective

Euclidean Lagrangian

Leff [x(u), ẋ(u)] =
1

2σ2
x

ẋ(u)2 + Veff(x) (3.6)

(ẋ(u) ≡ dx(u)/du) with the effective potential, Veff(x), defined as:

Veff(x) =
1

2σ2
x

µx(x)2 +
1

2
∂xµx(x) + VF (x) . (3.7)

Finally, the measure D[x(u)] is defined by discretizing each path x(u) connecting

x(0) = x0 and x(T ) = x. This can be done by dividing the time interval [0, T ] into

P intervals so that xn = x(un) (un = nT/P with n = 0, ..., P ), and by integrating

the internal P − 1 variables xn over the domain D. The path integral
∫

D[x(u)] is

then obtained as the limit for P → ∞ of this procedure, namely

∫

D[x(u)] ≡ lim
P→∞

(2πσ2
x∆t)−P/2

P−1
∏

n=1

∫

D

dxn . (3.8)
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It is well known form the physical sciences that the path integral Φ(x, ∆t|r0)

satisfies the partial differential equation Eq. (2.30) [11,12]. Note that this is consis-

tent with the fact that, by definition, for VF (x) ≡ 0 the pricing kernel coincides with

the transition density of the underlying diffusion process for Xt. In particular, as

observed in Sec. 2.2.1, one can use Eq. (2.30) to derive the exponent expansion for

Φ(x, ∆x|r0) using the trial form (2.32). As a result, the same expressions Eqs.(2.21-

2.23) derived for the transition density hold true also for the pricing kernel, provided

that the effective potential (3.7) replaces the one in Eq. (2.24).

3.2. Correspondence with Quantum Mechanics

It is interesting to note that the path integral formulation of the pricing kernel (3.5)

is mathematically equivalent to the quantum mechanical description of the thermo-

dynamic properties of an ideal gas of particles moving in the potential ~Veff(x) (~ is

the reduced Planck’s constant giving the correct energy dimensions). The complete

correspondence is obtained by identifying σ2
x → ~/m and ∆t → ~/kBT where m is

the mass of the particle, T is the temperature, and kB is the Boltzmann constant.

With this prescription, Φ(x, ∆t|x0) becomes the so-called single particle density ma-

trix, and the results of Makri and Miller [7] can be readily recovered. In addition,

it is straightforward to show using Eqs. (2.28) that the exponent expansion of its

diagonal elements, Φ(x0, ∆t|x0), are consistent with the so called Wigner expan-

sion for the high-temperature limit. Finally, performing the analytic continuation

known as Wick rotation ∆t → i~t allows one to obtain the single-particle quantum

propagator. In this case (2.30) becomes the celebrated Schrödinger equation.

This correspondence provides an alternative justification of the choice of the

exponential ansatz in Eq. (2.10). Indeed, this is the form in which can be expressed

in general the quantum mechanical propagator or the single particle density matrix

[11,12]. Furthermore, it has been shown for the quantum problem [22] that the

exponent expansion up to third order in ∆t and first order in ~/m can be derived

starting from the short time semiclassical propagator obtained [25] through a saddle

point analysis of the limit ~/m → 0. Indeed, it can be shown that the second order

correction W2(x, x0), Eq. (2.22), is the so-called van-Vleck determinant of the saddle

point expansion. This explains why the accuracy of the present scheme is preserved

in the corresponding regime of low volatility, as it was anticipated in Sec.2.2, and

illustrated in Sec.2.3.

3.3. An example: Zero Coupon Bond

In this Section we illustrate the prescriptions outlined above by applying the ex-

ponent expansion to the calculation of a zero coupon bond within the Vasicek and

Cox-Ingersoll-Ross models. The zero coupon bond is a financial instrument that

provides at time t = ∆t a payout of one unit of a certain notional. Its value at time
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Fig. 5. Accuracy of the exponent expansion for the pricing kernel Eq. (3.4) of the Vasicek model
(2.40), for a = 0.0717, b = 0.261, and x0 = 0.1. Symbols as in Fig. 4. The panel on the left shows
the maximum absolute error as a function of the order of the expansion n.

t = 0 can be expressed therefore as

P (0, ∆t) = E
[

exp−
∫ ∆t

0

du Xu

∣

∣

∣r0

]

(3.9)

which is of the standard form given by Eqs. (3.1) and (3.2), with VF [Xu] = Xu,

and P [X∆t] ≡ 1.

As a result, the exponent expansion for the kernel Eq. (3.4) can be easily derived

giving for the Vasicek model

W1(x, x0) = W 0
1 (x, x0) +

x + x0

2
(3.10)

W2(x, x0) = W 0
2 (x, x0) (3.11)

W3(x, x0) = W 0
3 (x, x0) −

σ2
x + 2a2(x − b)

24
(3.12)

where W 0
i (x, x0) are the expressions obtained for the transition probability

Eqs. (2.45)-(2.48) of Sec. 2.3.1. For the Cox-Ingersoll-Ross model instead we get:

W1(x, x0) = W 0
1 (x, x0) +

σ2

12
(x2 + x2

0 + xx0) (3.13)

W2(x, x0) = W 0
2 (x, x0) −

σ2

24
(3.14)

with W 0
i (x, x0) given by Eqs. (2.56)-(2.58), and W 0

3 (x, x0) related to the previous
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quantities as in Eq. (2.59) with

G(z) = G0(z) +
σ2

y

2

[

(α +
σ2

y

8
)
z5

5
+

γ

3
z3 + βz

]

, (3.15)

G0(z) as in Eq. (2.60), and ∂zVeff(z) = ∂zV
0
eff(z) + σ2

yz/2. The exponent expansion

for the pricing kernel can be compared with the exact results that can be shown to

read for the Vasicek model (2.40)

Kex(x, ∆t|, x0) =
exp

[

(x − x0)/a − ∆t(b − σ2/2a2)
]

(2πσ̄2)1/2

exp

[

−
[(

x0 − b + σ2/a2
)

e−a∆t − (y − b + σ2/a2)
]2

2σ̄2

]

,(3.16)

with σ̄ given by Eq. (2.42), and

Kex(x, ∆t|, x0) =
2

x
exp

[

−a
4 (x2 − x2

0) + (2ab − σ2

2 ) log x
x0

σ2

]

γ
√

xx0 ea2b∆t/σ2

2σ2 sinh [γ∆t/2]

exp
[

− γ

4σ2
(x2 + x2

0) coth [γ∆t/2]
]

Iq

(

xx0γ

2σ2 sinh [γ∆t/2]

)

(3.17)

with γ =
√

a2 + 2σ2, for the Cox-Ingersoll-Ross one. As illustrated in Fig.5, sim-

ilarly to the case of the transition probability, the exponent expansion provides a

remarkably good, and fast converging approximation of the exact pricing kernel for

financially sensible parameterizations, and for a sizable value of the time step ∆t.

Finally, the zero coupon bond can be obtained by numerical integration of the

pricing kernel according to Eq. (3.3). The corresponding results are shown in Fig. 6

confirming once more the quality of the approximation. In a similar fashion, one

can obtain systematic approximations for caplets, floorets, and other simple interest

rate derivatives whose value depends only on the value of the instantaneous short

rate at time t = ∆t. It is also possible to generalize this approach to path dependent

contingent claims, like Asian options.

4. Extending the time-step: path integral Monte Carlo methods

For an extended time interval T , the calculation of the transition density or, more in

general, of the pricing kernel (3.4) can be performed by discretizing the path integral

(3.5), and taking the limit of large number of time slices (P → ∞) according to the

standard Trotter product formula:

K(x, ∆t|x0) ' (2πσ2
x∆t)−P/2e−W0(x,x0)

P−1
∏

n=1

∫

D

dxn

× exp

[

− 1

2σ2
x∆t

k=P
∑

k=1

(xk − xk−1)
2 − ∆t

2

k=P
∑

k=1

(Veff(xk) + Veff(xk−1))

]

(4.1)
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Fig. 6. Zero Coupon Bond for the Cox-Ingersoll-Ross model. Parameters and symbols as in Fig.4.

with ∆t = T/P , xP = x, and the effective potential given by Eq. (3.7). It is

worth remarking that, for the case of the transition density, by interpreting the

latter equation as the Chapman-Kolmogorov property of Markov processes [10] one

obtains the following approximation of the short-time propagator

KTrotter(x, ∆t|x0) =
e−W0(x,x0)

√

2πσ2
x∆t

exp

[

− (x − x0)
2

2σ2
x∆t

− ∆t

2

(

Veff(x) + Veff(x0)
)

]

.

(4.2)

However, in contrast to the n = 1 exponent expansion, the latter expression is not

strictly correct up to order ∆t, and only in the limit P → ∞ the difference becomes

negligible.

In general, to obtain an accurate result for the pricing kernel for an extended time

period T one has to increase the number of time slices, or Trotter number P , until

convergence is achieved. By replacing the Trotter formula with the improved short-

time kernel obtained through the exponent expansion (2.10) one achieves a faster

convergence with the Trotter number, thus significantly reducing the computational

burden. In this case the finite-time expression of the pricing kernel reads

K(x, T |x0) ' (2πσ2
x∆t)−P/2

P−1
∏

n=1

∫

D

dxn

× exp

[

− 1

2σ2
x∆t

P
∑

k=1

(xk − xk−1)
2 −

P
∑

k=1

W (xk, xk−1, ∆t)

]

(4.3)

with W (x, x0, ∆t) given by Eq. (2.13).
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Equation (4.3) allows one to obtain the transition density or the pricing kernel

for a standard derivative through the calculation of a multidimensional integral over

the variables x1, . . . , xP−1. The latter integration is ideally suited for Monte Carlo

methods either in real, or in Fourier space [26], the specific choice depending on

the particular problem at hand. In addition, importance-sampling schemes, e.g., by

means of the Metropolis algorithm [27], can be easily applied in order to reduce the

computation time. However, in order not to introduce a systematic bias in the result

a particular attention has to be paid in order to sample accurately the configuration

space.

The most straightforward way to perform a Monte Carlo quadrature of Eq. (4.3),

is to realize that a simple Markov chain x = (x1, . . . , xP−1)

xn = xn−1 + σx

√
∆t Zn , (4.4)

with Zn, sampled from a standard normal distribution, generates an ensemble of

walkers distributed according to

p(x1, . . . , xP−1|x0) = (2πσ2
x∆t)−(P−1)/2 exp

[

− 1

2σ2
x∆t

P−1
∑

k=1

(xk − xk−1)
2

]

. (4.5)

As a result, the pricing kernel (4.3) can be obtained as the average over the random

paths generated according to Eq. (4.4) of the following estimator:

O(x, xP = x) = (2πσ2
x∆t)−1/2 exp

[

− 1

2σ2
x∆t

(x − xP−1)
2 −

P
∑

k=1

W (xk, xk−1)

]

.

(4.6)

A remarkable property of the path integral approach is that K(x, ∆t|x0) for any

final point x can be evaluated with a single Monte Carlo simulation by appropri-

ately reweighting the accumulated estimator. In fact the distribution of walkers

p(x1, . . . , xP−1|x0) is independent of the final point xP so that K(x′, ∆t|x0) can

be calculated by averaging O(x, xP = x′). In addition, the latter quantity can be

efficiently obtained by means of the following reweighting procedure

O(x, xP = x′) = O(x, xP = x)
W(x′,x)

W(x,x)
(4.7)

with

W(x,x) = exp

[

− 1

2σ2
x∆t

(x − xP−1)
2 − W (x, xP−1)

]

. (4.8)

Expectation values of the form (3.3) on a time horizon T can be calculated by

integrating over the final variable giving:

V0(T, x0) =

∫

D

dxP (x)K(x, T |x0) ' (2πσ2
x∆t)−P/2

P
∏

n=1

∫

D

dxnP (xP )

exp

[

− 1

2σ2
x∆t

P
∑

k=1

(xk − xk−1)
2 −

P
∑

k=1

W (xk, xk−1)

]

. (4.9)
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This can be simulated by extending the Markov chain (4.4) up to step x = xP , and

accumulating the estimator

P(x, xP = x′) = P (x) exp

[

−
P

∑

k=1

W (xk, xk−1)

]

. (4.10)

Remarkably, within the path integral approach, the sensitivities of such expectation

values with respect to the model parameters (the so-called Greeks) can be computed

in the same Monte Carlo simulation, thus avoiding any numerical differentiation.

Indeed, indicating with θ a generic parameter, under quite general conditions [28],

one has

∂θV0(T, x0, θ) =

∫

D

dx [Kθ(x, T |x0)∂θP (x, θ) + P (x, θ)∂θKθ(x, T |x0)] . (4.11)

As a result the sensitivity ∂θV0(T, x0, θ) can be calculated by means of the estimator:

G(x, xP = x′) = exp

[

−
P

∑

k=1

W (xk, xk−1)

]

(∂θP + P∂θ log Kθ) . (4.12)

Higher order sensitivities can be obtained in a similar fashion.

The convergence with the Trotter number P of the path integral Monte Carlo

estimates is illustrated in Fig. 7 for the calculation of the first five moments of the

T = 40 yrs transition probability of the Cox-Ingersoll-Ross model (2.52). The finite

P estimates converge very rapidly with 1/P . In particular, for the case considered,

P = 20 already provides estimates in agreement with the exact result within statis-

tical uncertainties. In general, as also shown in the figure, a convenient indicator of

the convergence is the zeroth-moment or normalization of the distribution. The cal-

culation of this quantity allows in general to assess the level of convergence without

performing a complete scaling with P , thus saving computational time.

5. Application to deterministic numerical methods: Green’s

function backward induction

The Green’s function backward induction is a deterministic approach introduced

in financial context by Rosa-Clot and Taddei [9] alternative to partial differential

equation methods. This is based on the path integral representation of standard

contingent claims (3.1), that we rewrite here for convenience as

E [GT (Yu) | Y0] . (5.1)

Here GT is the payout functional dependent on the realization of the path of the

underlying up to expiry T , and Yt is the general process following the diffusion (1.1).

As partial differential methods, the Green’s function backward induction is efficient

only for low-dimensional problems but allows one to include naturally early exercise

features in the contingent claim, i.e., to treat expectation values of the form

max
τ

E [Gτ (Yu)] (5.2)
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Fig. 7. Convergence with the Trotter number P of the normalization, and of the first 4 moments
of the 40 years transition density for the CIR model. Parameters as in Fig.3. In the first top panels

the relative error with respect to the exact result is reported. Lines are quadratic fits.

where 0 ≤ τ ≤ T is the stopping time of the process.

For standard contingent claims, Eqs. (3.1) and (3.2), the functional GT [Y (u)]

can be discretized in the form,

GT [Yu] '
N
∏

i=0

g(i)(Yi). (5.3)

and the conditional expectation value (5.1) is given by

E[GT [Yu] | Y0] '
∫

...

∫ N
∏

i=1

dYi g(N)(YN )

N
∏

j=1

ρ̃(Yj , tj | Yj−1, tj−1), (5.4)

where the function, ρ̃, is

ρ̃(Yi, ti | Yi−1, ti−1) = ρ(Yi, ti | Yi−1, ti−1) g(i−1)(Yi−1) . (5.5)

This is the Green’s function of the partial differential equation associated with the

calculation of the expectation value (5.1), hence the name of the method.
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Let us now consider a single integration
∫

dYi ρ̃(Yi+1, ti+1 | Yi, ti) ρ̃(Yi, ti | Yi−1, ti−1) . (5.6)

If we approximate this integral by using a numerical quadrature rule, we obtain the

following algebraic relation

M
∑

γ=1

ρ̃ (i)
αγ ρ̃

(i−1)
γβ wγ , (5.7)

where the matrices, ρ̃ (i), are defined by

ρ̃
(i)

αβ = ρ̃(zα, ti+1 | zβ, ti), (5.8)

the quantities, wα, and zα, are the weights and the grid points, respectively, associ-

ated with the integration rule, and α, β, γ = 1, . . . , M . In conclusion, the expression

(5.4) can be written as

E[GT [Y (τ)] | Y0 = zα] '
M
∑

γ1,...,γN=1

G(0)
γ1α G(1)

γ2γ1
. . .G(N−2)

γN−1γN−2
G(N−1)

γN γN−1
g(N)

γN
,

(5.9)

where G
(i)
αβ = wα ρ̃

(i)
αβ , and g

(N)
γN = g(N)(zγN

). Therefore, we have reduced the eval-

uation of the expectation value of a functional to the product of N matrices with

dimension M . By starting the calculation from the right (backward induction),

we need to memorize just linear arrays, while the matrix elements, G
(i)
αβ , can be

computed step by step. In practice, one can follow the following algorithm:

i. Set uα = g
(N)
α (α = 1, . . . , M), and i = N − 1.

ii. Set vα =

M
∑

β=1

uβ G
(i)
βα (α = 1, . . . , M).

iii. If i > 0 then set uα = vα (α = 1, . . . , M), i = i − 1, and go to ii.

Here the arrays, uα, and vα, are two working vectors.

The inclusion of early exercise features is completely straightforward and simply

involves the following steps:

i. Set uα = g
(N)
α (α = 1, . . . , M), and i = N − 1.

ii. Set w
(i)
α = f(zα, ti), and vα = max





M
∑

β=1

uβ G
(i)
βα , w(i)

α





(α = 1, . . . , M).

iii. If i > 0 then set uα = vα (α = 1, . . . , M), i = i − 1, and go to ii.

The only difference is in the point ii, where we have now a test operation, and the

function, f(zα, ti), depends on the problem considered.

The exponent expansion can significatively speed up the Green’s function back-

ward induction presented above. In fact, as illustrated in the previous Sections, it
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allows one obtain reliable approximations of ρ̃(Yi, ti | Yi−1, ti−1) for a time step

(ti − ti−1) much larger than those that can be safely used with a simple Euler dis-

cretization. As a result, one can reduce the discretization bias to acceptable levels

with a much smaller number of intermediate time steps N . The application of this

procedure to local volatility models is currently in progress and will be presented

elsewhere [29].

6. Conclusions

Closed-form approximations of general non-liner diffusions are of primary impor-

tance in a variety of fields of quantitative Finance. In Econometrics, they are crucial

for an efficient maximum likelihood estimation of the parameters of continues time

processes. In derivative pricing, they allow one to develop effective approximation

schemes or to improve the efficiency of numerical approaches.

In this paper we have presented an effective method to produce a family of

closed-form approximation of the transition probability of a general diffusion pro-

cess. Such approximation, dubbed exponent expansion, is based on an exponential

ansatz of the transition probability for a finite time interval ∆t, and a series expan-

sion of the deviation of its logarithm from that of a Gaussian distribution. Through

this procedure the transition probability is obtained as a power series in ∆t which

becomes exponentially exact if an increasing number of terms is included, and pro-

vides remarkably accurate results even truncating it to the first few (say 3) terms.

This approach can be easily implemented, and involves the calculation of simple

one dimensional integrals. In addition, it applies to a very wide class of volatility

functions, even to those that do not have a simple analytic expression but they are

specified through a numerical interpolation.

We have shown that the exponent expansion produces very accurate results for

integrable diffusions of financial interest, like the Vasicek and the Cox-Ingersoll-Ross

models. In particular, we have compared our results with those obtained with the

state-of-the-art approximation of discretely sampled diffusions [18], that shares a

similar rationale. We find that the exponent expansion provides a similar accuracy

in most of the cases but it is more stable in the low-volatility regimes. Furthermore

the implementation of the exponent expansion proves to be simpler.

In contrast to previously developed approximation schemes that share a similar

rationale [18], the exponent expansion always generates positive definite transition

probabilities, and remains stable also in the limit of low volatility.

By introducing a path integral framework we have generalized the exponent

expansion to the calculation of the pricing kernels of financial derivatives, and we

have shown how to obtain accurate approximations for the price of simple contin-

gent claims. We have also shown how the exponent expansion can be naturally used

to increase the efficiency of both deterministic and stochastic numerical simula-

tions. A systematic study of the efficiency of this approach for the pricing of exotic

derivatives, and the calibration of local and stochastic volatility models will be the
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object of future investigations.
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